UV epoxy bonding for enhanced SAW transmission and microscale acoustofluidic integration.
نویسندگان
چکیده
Surface acoustic waves (SAWs) are appealing as a means to manipulate fluids within lab-on-a-chip systems. However, current acoustofluidic devices almost universally rely on elastomeric materials, especially PDMS, that are inherently ill-suited for conveyance of elastic energy due to their strong attenuation properties. Here, we explore the use of a low-viscosity UV epoxy resin for room temperature bonding of lithium niobate (LiNbO(3)), the most widely used anisotropic piezoelectric substrate used in the generation of SAWs, to standard micromachined superstrates such as Pyrex® and silicon. The bonding methodology is straightforward and allows for reliable production of sub-micron bonds that are capable of enduring the high surface strains and accelerations needed for conveyance of SAWs. Devices prepared with this approach display as much as two orders of magnitude, or 20 dB, improvement in SAW transmission compared to those fabricated using the standard PDMS elastomer. This enhancement enables a broad range of applications in acoustofluidics that are consistent with the low power requirements of portable battery-driven circuits and the development of genuinely portable lab-on-a-chip devices. The method is exemplified in the fabrication of a closed-loop bidirectional SAW pumping concept with applications in micro-scale flow control, and represents the first demonstration of closed channel SAW pumping in a bonded glass/LiNbO(3) device.
منابع مشابه
Effects of Colloidal Nanosilica on Epoxy-based Nanocomposite Coatings
Epoxy-based nanocomposites were fabricated with different content of colloidal silica nanoparticles such as 10.0, 20.0 and 30.0 wt %, through solution casting. The covalent bonding interfaces, resulting from a ring-opening reaction between silica nanoparticles and epoxy matrix were confirmed by the Fourier transform (FT-IR) infrared spectroscopy. These nanocomposites were characterized for ...
متن کاملPlasma Treated Multi-Walled Carbon Nanotubes (MWCNTs) for Epoxy Nanocomposites
Plasma nanocoating of allylamine were deposited on the surfaces of multi-walled carbon nanotubes (MWCNTs) to provide desirable functionalities and thus to tailor the surface characteristics of MWCNTs for improved dispersion and interfacial adhesion in epoxy matrices. Plasma nanocoated MWCNTs were characterized using scanning electron microscopy (SEM), high-resolution transmission electron micro...
متن کاملSynthesis and characterization of novel dual UV/thermal curable epoxy rosinate
Rosin has a comprehensive application in adhesives, printing inks, protective coatings, rubbers and pharmaceutical. In this work, novel dual UV/thermal curable epoxy rosinate was synthesized by esterification reaction between epoxy resin and purified rosin. This product was evaluated by FT-IR spectroscopy techniques and acid number. UV curable resin was formulated for UV curing ability by benzo...
متن کاملIsolation of exosomes from whole blood by integrating acoustics and microfluidics.
Exosomes are nanoscale extracellular vesicles that play an important role in many biological processes, including intercellular communications, antigen presentation, and the transport of proteins, RNA, and other molecules. Recently there has been significant interest in exosome-related fundamental research, seeking new exosome-based biomarkers for health monitoring and disease diagnoses. Here, ...
متن کاملEffect of surface-functionalization of Na+-montmorillonite nanoclay using 3-aminopropyltrimethoxy silane on the mechanical properties of E-glass chopped strand mat/epoxy composites
In the present work, Na+-montmorillonite nanoclay (Na-MMT) was functionalized using 3-aminopropyltrimethoxysilane (3-APTMS) as a coupling agent. The covalent functionalization of MMT was confirmed by Fourier-transform infrared spectroscopy (FT-IR). In the specimen fabrication stage, 5 wt% of pristine MMT or silane-functionalized MMT (f-MMT) were incorporated into an epoxy system and the resulta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lab on a chip
دوره 12 16 شماره
صفحات -
تاریخ انتشار 2012